Getting Started =============== **Protex** is an lightweight object-oriented python extension to easily enable bond breaking and formation in molecular dynamics simulations. Getting involved ---------------- Please report **bugs** or **enhancement requests** through the `Issue Tracker`_. .. _Issue Tracker: https://github.com/florianjoerg/protex/issues User Guide ---------- The Protex :ref:`Quick-Start-Guide` provides information on how to get startet with setting up a system for Protex. .. _installation-instructions: Installing Protex ----------------- conda-forge ^^^^^^^^^^^ .. tip:: The easiest and preferred way to install protex is, to just get it from conda-forge. .. code-block:: bash conda install protex -c conda-forge Source Code ^^^^^^^^^^^ It is recommended to use a (conda) environment for the installation. Go to `install using conda env`_. **Source code** is available from https://github.com/florianjoerg/protex/ under the MIT License. Obtain the sources with `git`_. .. code-block:: bash git clone https://github.com/florianjoerg/protex.git cd protex pip install . .. _git: https://git-scm.com/ .. _install using conda env: Conda Environment ^^^^^^^^^^^^^^^^^ Information how to obtain conda can be found `here `_. First create a conda environment and install the dependencies. You can clone the github project and use the yml file. .. .. Note:: If you plan to use protex with polarizable MD simulations it is import to get the current master branch of ParmEd. The last release (v3.4.3) is not enough since the very recently added Drude functionality is necessary. .. code-block:: bash git clone https://github.com/florianjoerg/protex.git cd protex/devtools/conda_envs conda env create --file protex.yml conda activate protex cd ../../ pip install . .. warning:: For running simulations on an NVIDIA GPU using CUDA, OpenMM will install the python package cudatoolkit. Make sure the version in your (conda) environment is **not** higher than the CUDA version of your NVIDIA driver. If necessary, you can install the correct cudatoolkit version by using conda install cudatoolkit=X.Y -c conda-forge .. code-block:: bash nvidia-smi # +-----------------------------------------------------------------------------+ # | NVIDIA-SMI 470.141.03 Driver Version: 470.141.03 CUDA Version: 11.4 | # +-------------------------------+----------------------+----------------------+ # ... conda list | grep cudatoolkit # cudatoolkit 11.4.2 h7a5bcfd_10 conda-forge # Here, CUDA Version of nvidia-smi (11.4) and the cudatoolkit version 11.4.2 match. # If cudatoolkit would e.g. be 11.7 you should run the next command and use the # CUDA Version of nvidia-smi conda install -c conda-forge cudatoolkit=X.Y # so in this example: # conda install -c conda-forge cudatoolkit=11.4 .. Tip:: It is highly recommended to use the VVIntegrator Plugin for polarizable simulations. |:arrow_down:| **Usage with the VVIntegrator Plugin for OpenMM** To use the better Drude Integrator install the plugin from `velocity-verlet `_. Here a quick install guide is given. Use the documentation provided there for further details. .. code-block:: bash conda activate protex # if not already done # change directory outside of protex, if not already done cd .. conda install swig git clone https://github.com/z-gong/openmm-velocityVerlet.git cd openmm-velocityVerlet # set OPENMM_DIR sed -i "s~SET(OPENMM_DIR \"/usr/local/openmm~SET(OPENMM_DIR \"$(echo ${CONDA_PREFIX}/../../pkgs/openmm-7.6*/)~" CMakeLists.txt # set CMAKE_INSTALL_PREFIX sed -i "/^ENDIF (\${CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT})/a SET(CMAKE_INSTALL_PREFIX \"${CONDA_PREFIX}\" CACHE PATH \"Where to install the plugin\" FORCE)" CMakeLists.txt mkdir build cd build cmake ../. make install cd python make PythonInstall .. admonition:: |:confetti_ball:| Success! |:confetti_ball:| :class: successstyle Now you are ready to go! Try protex using the :ref:`quick-start-guide`. Citation -------- When using Protex in published work, please cite - Joerg F., Wieder M., Schröder C. *Frontiers in Chemistry: Molecular Liquids* (2023), 11, `DOI `_. Thank you!